Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
نویسندگان
چکیده
Leave-one-out cross-validation (LOO) and the widely applicable information criterion (WAIC) are methods for estimating pointwise out-of-sample prediction accuracy from a fitted Bayesian model using the log-likelihood evaluated at the posterior simulations of the parameter values. LOO and WAIC have various advantages over simpler estimates of predictive error such as AIC and DIC but are less used in practice because they involve additional computational steps. Here we lay out fast and stable computations for LOO and WAIC that can be performed using existing simulation draws. We introduce an efficient computation of LOO using Pareto-smoothed importance sampling (PSIS), a new procedure for regularizing importance weights. Although WAIC is asymptotically equal to LOO, we demonstrate that PSIS-LOO is more robust in the finite case with weak priors or influential observations. As a byproduct of our calculations, we also obtain approximate standard errors for estimated predictive errors and for comparing of predictive errors between two models. We implement the computations in an R package called loo and demonstrate using models fit with the Bayesian inference package Stan.
منابع مشابه
WAIC and cross-validation in Stan∗
The Watanabe-Akaike information criterion (WAIC) and cross-validation are methods for estimating pointwise out-of-sample prediction accuracy from a fitted Bayesian model. WAIC is based on the series expansion of leave-one-out cross-validation (LOO), and asymptotically they are equal. With finite data, WAIC and cross-validation address different predictive questions and thus it is useful to be a...
متن کاملApproximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC
Abstract: A natural method for approximating out-of-sample predictive evaluation is leaveone-out cross-validation (LOOCV) — we alternately hold out each case from a full data set and then train a Bayesian model using Markov chain Monte Carlo (MCMC) without the held-out; at last we evaluate the posterior predictive distribution of all cases with their actual observations. However, actual LOOCV i...
متن کاملBayesian Cross Validation and WAIC for Predictive Prior Design in Regular Asymptotic Theory
Prior design is one of the most important problems in both statistics and machine learning. The cross validation (CV) and the widely applicable information criterion (WAIC) are predictive measures of the Bayesian estimation, however, it has been difficult to apply them to find the optimal prior because their mathematical properties in prior evaluation have been unknown and the region of the hyp...
متن کاملExpected Utility Estimation via Cross-Validation
We discuss practical methods for the assessment, comparison and selection of complex hierarchical Bayesian models. A natural way to assess the goodness of the model is to estimate its future predictive capability by estimating expected utilities. Instead of just making a point estimate, it is important to obtain the distribution of the expected utility estimate in order to describe the associat...
متن کاملCatching Up Faster by Switching Sooner: A Prequential Solution to the AIC-BIC Dilemma
Bayesian model averaging, model selection and its approximations such as BIC are generally statistically consistent, but sometimes achieve slower rates of convergence than other methods such as AIC and leave-one-out cross-validation. On the other hand, these other methods can be inconsistent. We identify the catch-up phenomenon as a novel explanation for the slow convergence of Bayesian methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics and Computing
دوره 27 شماره
صفحات -
تاریخ انتشار 2017